RESEARCH AREAS

Topological Data Analysis

Statistical Inference on Topology and Geometry

Machine Learning Theory

Computational Topology

Clustering

DEGREES

2013 – 2018

Ph.D. in Statistics & Machine Learning, Carnegie Mellon University

2013 – 2014

M.S. in Statistics, Carnegie Mellon University

2006 – 2013

B.S. in Mathematics, Computer Science, Statistics, Seoul National University

BIOGRAPHY

2023 – Present

Assistant Professor, Department of Statistics, Seoul National University

2020 – 2023

Non Permanent Researcher, DataShape, Inria Saclay

2021 – 2023

Non Permanent Researcher, Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay

2018 – 2020

PostDoc, DataShape, Inria Saclay

SELECTED PUBLICATIONS

Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Sik Kim, Frédéric Chazal, Larry Wasserman, PLLay: Efficient Topological Layer based on Persistence Landscapes (2021)

Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, Larry Wasserman, Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex (2020)

Jisu Kim, Jaehyeok Shin, Alessandro Rinaldo, Larry Wasserman, Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Volume Dimension (2019)

Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo, Larry Wasserman, Estimating the Reach of a Manifold (2019)

Jisu Kim, Alessandro Rinaldo, Larry Wasserman, Minimax Rates for Estimating the Dimension of a Manifold (2019)

Jisu Kim, Yen-Chi Chen, Sivaraman Balakrishnan, Alessandro Rinaldo, Larry Wasserman, Statistical Inference for Cluster Trees (2017)

AWARDS

2019 Umesh Gavasakar Memorial Thesis Award, by Department of Statistics, Carnegie Mellon University

2013 – 2018 Samsung Scholarship (for Doctoral degree)

2017 TA of the Year Award, by Department of Statistics, Carnegie Mellon University

2017 Student of the year for 2017, by the American Statistical Association Pittsburgh Chapter

2016 α TA Award, by Machine Learning Department, Carnegie Mellon University